If the third term in the binomial expansion of ${\left( {1 + {x^{{{\log }_2}\,x}}} \right)^5}$ equals $2560$, then a possible value of $x$ is
$\frac{1}{4}$
$4\sqrt 2 $
$\frac{1}{8}$
$2\sqrt 2 $
If the ratio of the coefficient of third and fourth term in the expansion of ${\left( {x - \frac{1}{{2x}}} \right)^n}$ is $1 : 2$, then the value of $ n$ will be
In the binomial expansion of ${\left( {a - b} \right)^n},n \ge 5,\;$ the sum of $5^{th}$ and $6^{th}$ terms is zero , then $a/b$ equals.
If the co-efficient of $x^9$ in $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ and the co-efficient of $x^{-9}$ in $\left(\alpha x-\frac{1}{\beta x^3}\right)^{11}$ are equal, then $(\alpha \beta)^2$ is equal to $.............$.
If the ${(r + 1)^{th}}$ term in the expansion of ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ has the same power of $a$ and $b$, then the value of $r$ is
If the number of integral terms in the expansion of $\left(3^{\frac{1}{2}}+5^{\frac{1}{8}}\right)^{\text {n }}$ is exactly $33,$ then the least value of $n$ is