If the third term in the binomial expansion of ${\left( {1 + {x^{{{\log }_2}\,x}}} \right)^5}$ equals $2560$, then a possible value of $x$ is
$\frac{1}{4}$
$4\sqrt 2 $
$\frac{1}{8}$
$2\sqrt 2 $
The term independent of $x$ in the expansion of ${\left( {\frac{1}{2}{x^{1/3}} + {x^{ - 1/5}}} \right)^8}$ will be
Coefficient of $x^{11}$ in the expansion of $\left(1+x^2\right)^4\left(1+x^3\right)^7\left(1+x^4\right)^{12}$ is
The term independent of $x$ in the expression of $\left(1-x^{2}+3 x^{3}\right)\left(\frac{5}{2} x^{3}-\frac{1}{5 x^{2}}\right)^{11}, x \neq 0$ is
The coefficient of ${x^{ - 9}}$ in the expansion of ${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^9}$ is
If in the expansion of ${(1 + x)^{21}}$, the coefficients of ${x^r}$ and ${x^{r + 1}}$ be equal, then $r$ is equal to